

python-escpos - Python library to manipulate ESC/POS Printers

[image: Continous Integration]
 [https://travis-ci.org/python-escpos/python-escpos][image: Code Health]
 [https://landscape.io/github/python-escpos/python-escpos/master][image: Code Coverage]
 [https://codecov.io/github/python-escpos/python-escpos?branch=master][image: Documentation Status]
 [http://python-escpos.readthedocs.io/en/latest/?badge=stable]
Description

Python ESC/POS is a library which lets the user have access to all those printers handled
by ESC/POS commands, as defined by Epson, from a Python application.

The library tries to implement the functions provided by the ESC/POS-commandset and supports sending text, images,
barcodes and qr-codes to the printer.

Text can be aligned/justified and fonts can be changed by size, type and weight.

Also, this module handles some hardware functionalities like cutting paper, control characters, printer reset
and similar functions.

Since supported commands differ from printer to printer the software tries to automatically apply the right
settings for the printer that you set. These settings are handled by
escpos-printer-db [https://github.com/receipt-print-hq/escpos-printer-db] which is also used in
escpos-php [https://github.com/mike42/escpos-php].

Dependencies

This library makes use of:

	pyusb [https://github.com/walac/pyusb] for USB-printers

	Pillow [https://github.com/python-pillow/Pillow] for image printing

	qrcode [https://github.com/lincolnloop/python-qrcode] for the generation of QR-codes

	pyserial [https://github.com/pyserial/pyserial] for serial printers

	viivakoodi [https://github.com/kxepal/viivakoodi] for the generation of barcodes

Documentation and Usage

The basic usage is:

from escpos.printer import Usb

""" Seiko Epson Corp. Receipt Printer (EPSON TM-T88III) """
p = Usb(0x04b8, 0x0202, 0, profile="TM-T88III")
p.text("Hello World\n")
p.image("logo.gif")
p.barcode('1324354657687', 'EAN13', 64, 2, '', '')
p.cut()

The full project-documentation is available on Read the Docs [https://python-escpos.readthedocs.io].

Contributing

This project is open for any contribution! Please see CONTRIBUTING.rst for more information.

Content

User Documentation

	Installation

	Methods

	Printers

	Raspberry Pi

	TODO

	Usage

	Printing Barcodes

Developer Documentation

	Contributing

	Changelog

API Documentation

	Esc/Pos

	Printer implementations

	Constants

	Exceptions

	Capabilities

	Config

	Image helper

	CLI

	Magic Encode

	Codepages

	Katakana

Indices and tables

	Index

	Module Index

	Search Page

Installation

	Last Reviewed

	2016-07-23

Installation with PIP

Installation should be rather straight-forward. python-escpos is on PyPi, so you can simply enter:

pip install python-escpos

This should install all necessary dependencies. Apart from that python-escpos should also be
available as a Debian package. If you want to always benefit from the newest stable releases you should probably
install from PyPi.

Setup udev for USB-Printers

	Get the Product ID and Vendor ID from the lsusb command
lsusb Bus 002 Device 001: ID 1a2b:1a2b Device name

	Create a udev rule to let users belonging to dialout group use the
printer. You can create the file
/etc/udev/rules.d/99-escpos.rules and add the following:
SUBSYSTEM=="usb", ATTRS{idVendor}=="1a2b", ATTRS{idProduct}=="1a2b", MODE="0664", GROUP="dialout"
Replace idVendor and idProduct hex numbers with the ones that you
got from the previous step. Note that you can either, add yourself to
“dialout” group, or use another group you already belongs instead
“dialout” and set it in the GROUP parameter in the above rule.

	Restart udev # sudo service udev restart In some new systems it
is done with # sudo udevadm control --reload

Enabling tab-completion in CLI

python-escpos has a CLI with tab-completion. This is realised with argcomplete.
In order for this to work you have to enable tab-completion, which is described in
the manual of argcomplete [https://argcomplete.readthedocs.io].

If you only want to enable it for python-escpos, or global activation does not work, try this:

eval "$(register-python-argcomplete python-escpos)"

Methods

	Last Reviewed

	2017-01-25

Escpos class

The core part of this libraries API is the Escpos class.
You use it by instantiating a printer which is a child of Escpos.
The following methods are available:

Printers

	Last Reviewed

	2017-01-25

As of now there are 5 different type of printer implementations.

USB

The USB-class uses pyusb and libusb to communicate with USB-based
printers. Note that this driver is not suited for USB-to-Serial-adapters
and similiar devices, but only for those implementing native USB.

Serial

This driver uses pyserial in order to communicate with serial devices.
If you are using an USB-based adapter to connect to the serial port,
then you should also use this driver.
The configuration is often based on DIP-switches that you can set on your
printer. For the hardware-configuration please refer to your printer’s manual.

Network

This driver is based on the socket class.

Troubleshooting

Problems with a network-attached printer can have numerous causes. Make sure that your device has a proper IP address.
Often you can check the IP address by triggering the self-test of the device. As a next step try to send text
manually to the device. You could use for example:

echo "OK\n" | nc IPADDRESS 9100
the port number is often 9100

As a last resort try to reset the interface of the printer. This should be described in its manual.

File

This printer “prints” just into a file-handle. Especially on *nix-systems this comes very handy.

Dummy

The Dummy-printer is mainly for testing- and debugging-purposes. It stores
all of the “output” as raw ESC/POS in a string and returns that.

Raspberry Pi

	Last Reviewed

	2017-01-05

This instructions were tested on Raspbian Jessie.

Warning

You should never directly connect an printer with RS232-interface (serial port) directly to
a Raspberry PI or similar interface (e.g. those simple USB-sticks without encasing). Those interfaces are
based on 5V- or 3,3V-logic (the latter in the case of Raspberry PI). Classical RS232 uses 12V-logic and would
thus destroy your interface. Connect both systems with an appropriate level shifter.

Dependencies

First, install the packages available on Raspbian.

sudo apt-get install python3 python3-setuptools python3-pip libjpeg8-dev

Installation

You can install by using pip3.

sudo pip3 install --upgrade pip
sudo pip3 install python-escpos

Run

You need sudo and python3 to run your program.

sudo python3 your-program.py

Now you can attach your printer and and test it with the example code in the project’s set of examples.
You can find that in the project-repository [https://github.com/python-escpos/python-escpos].

For more details on this check the installation-manual.

TODO

Introduction

python-escpos is the initial idea, from here we can start to build a
robust library to get most of the ESC/POS printers working with this
library.

Eventually, this library must be able to cover almost all the defined
models detailed in the ESC/POS Command Specification Manual.

Details

What things are planned to work on?

Testing

	Test on many printers as possible (USB, Serial, Network)

	automate testing

Design

	Add all those sequences which are not common, but part of the ESC/POS
Command Specifications.

	Port to Python 3

	Windows compatibility (hidapi instead libusb?)

	PDF417 support

	use something similar to the capabilities in escpos-php

Todos in the codebase

Usage

	Last Reviewed

	2017-06-10

Define your printer

USB printer

Before creating your Python ESC/POS printer instance, consult the system to obtain
the printer parameters. This is done with the ‘lsusb’ command.

Run the command and look for the “Vendor ID” and “Product ID” and write
down the values. These values are displayed just before the name
of the device with the following format:

xxxx:xxxx

Example:

lsusb
Bus 002 Device 001: ID 04b8:0202 Epson ...

Write down the the values in question, then issue the following command
so you can get the “Interface” number and “End Point”

lsusb -vvv -d xxxx:xxxx | grep iInterface
 iInterface 0
lsusb -vvv -d xxxx:xxxx | grep bEndpointAddress | grep OUT
 bEndpointAddress 0x01 EP 1 OUT

The first command will yield the “Interface” number that must be handy
to have and the second yields the “Output Endpoint” address.

USB Printer initialization

Epson = printer.Usb(0x04b8,0x0202)

By default the “Interface” number is “0” and the “Output Endpoint”
address is “0x01”. If you have other values then you can define them on
your instance. So, assuming that we have another printer where in_ep is
on 0x81 and out_ep=0x02, then the printer definition should look like:

Generic USB Printer initialization

Generic = printer.Usb(0x1a2b,0x1a2b,0,0x81,0x02)

Network printer

You only need the IP of your printer, either because it is getting its
IP by DHCP or you set it manually.

Network Printer initialization

Epson = printer.Network("192.168.1.99")

Serial printer

Most of the default values set by the DIP switches for the serial
printers, have been set as default on the serial printer class, so the
only thing you need to know is which serial port the printer is connected
to.

Serial printer initialization

Epson = printer.Serial("/dev/tty0")

Other printers

Some printers under /dev can’t be used or initialized with any of the
methods described above. Usually, those are printers used by printcap,
however, if you know the device name, you could try to initialize by
passing the device node name.

Epson = printer.File("/dev/usb/lp1")

The default is “/dev/usb/lp0”, so if the printer is located on that
node, then you don’t necessary need to pass the node name.

Define your instance

The following example demonstrates how to initialize the Epson TM-TI88IV
on a USB interface.

from escpos import *
""" Seiko Epson Corp. Receipt Printer M129 Definitions (EPSON TM-T88IV) """
Epson = printer.Usb(0x04b8,0x0202)
Print text
Epson.text("Hello World\n")
Print image
Epson.image("logo.gif")
Print QR Code
Epson.qr("You can readme from your smartphone")
Print barcode
Epson.barcode('1324354657687','EAN13',64,2,'','')
Cut paper
Epson.cut()

Configuration File

You can create a configuration file for python-escpos. This will
allow you to use the CLI, and skip some setup when using the library
programmatically.

The default configuration file is named config.yaml and uses the YAML
format. For windows it is probably at:

%appdata%/python-escpos/config.yaml

And for linux:

$HOME/.config/python-escpos/config.yaml

If you aren’t sure, run:

from escpos import config
c = config.Config()
c.load()

If it can’t find the configuration file in the default location, it will tell
you where it’s looking. You can always pass a path, or a list of paths, to
the load() method.

To load the configured printer, run:

from escpos import config
c = config.Config()
printer = c.printer()

The printer section

The printer configuration section defines a default printer to create.

The only required paramter is type. The value of this has to be one of the
printers defined in Printers.

The rest of the given parameters will be passed on to the initialization of the printer class.
Use these to overwrite the default values as specified in Printers.
This implies that the parameters have to match the parameter-names of the respective printer class.

An example file printer:

printer:
 type: File
 devfile: /dev/someprinter

And for a network printer:

printer:
 type: Network
 host: 127.0.0.1
 port: 9000

An USB-printer could be defined by:

printer:
 type: Usb
 idVendor: 0x1234
 idProduct: 0x5678
 in_ep: 0x66
 out_ep: 0x01

Printing text right

Python-escpos is designed to accept unicode. So make sure that you use u'strings' or import unicode_literals
from __future__ if you are on Python 2. On Python 3 you should be fine.

For normal usage you can simply pass your text to the printers text()-function. It will automatically guess
the right codepage and then send the encoded data to the printer. If this feature does not work, please try to
isolate the error and then create an issue on the Github project page.

If you want or need to you can manually set the codepage. For this please use the charcode()-function. You can set
any key-value that is in CHARCODE. If something is wrong, an CharCodeError will be raised.
After you have manually set the codepage the printer won’t change it anymore. You can revert to normal behaviour
by setting charcode to AUTO.

Advanced Usage: Print from binary blob

Imagine you have a file with ESC/POS-commands in binary form. This could be useful for testing capabilities of your
printer with a known working combination of commands.
You can print this data with the following code, using the standard methods of python-escpos. (This is an
advantage of the fact that _raw() accepts binary strings.)

from escpos import printer
p = printer.Serial() # adapt this to your printer model

file = open("binary-blob.bin", "rb") # read in the file containing your commands in binary-mode
data = file.read()
file.close()

p._raw(data)

That’s all, the printer should then print your data. You can also use this technique to let others reproduce an issue
that you have found. (Just “print” your commands to a File-printer on your local filesystem.)
However, please keep in mind, that often it is easier and better to just supply the code that you are using.

Here you can download an example, that will print a set of common barcodes:

	barcode.bin by @mike42 [https://github.com/mike42]

Advanced Usage: change capabilities-profile

Packaged together with the escpos-code is a capabilities-file. This file in
JSON-format describes the capabilities of different printers. It is developed and hosted in
escpos-printer-db [https://github.com/receipt-print-hq/escpos-printer-db].

Certain applications like the usage of cx_freeze [https://cx-freeze.readthedocs.io] might change the
packaging structure. This leads to the capabilities-profile not being found.
In this case you can use the environment-variable ESCPOS_CAPABILITIES_FILE.
The following code is an example.

use packaged capabilities-profile
python-escpos cut

use capabilities-profile that you have put in /usr/python-escpos
export ESCPOS_CAPABILITIES_FILE=/usr/python-escpos/capabilities.json
python-escpos cut

use packaged file again
unset ESCPOS_CAPABILITIES_FILE
python-escpos cut

Hint: preprocess printing

Printing images directly to the printer is rather slow.
One factor that slows down the process is the transmission over e.g. serial port.

Apart from configuring your printer to use the maximum baudrate (in the case of serial-printers), there is not much
that you can do.
However you could use the escpos.printer.Dummy-printer to preprocess your image.
This is probably best explained by an example:

from escpos.printer import Serial, Dummy

p = Serial()
d = Dummy()

create ESC/POS for the print job, this should go really fast
d.text("This is my image:\n")
d.image("funny_cat.png")
d.cut()

send code to printer
p._raw(d.output)

This way you could also store the code in a file and print it later.
You could then for example print the code from another process than your main-program and thus reduce the waiting time.
(Of course this will not make the printer print faster.)

Printing Barcodes

	Last Reviewed

	2016-07-31

Most ESC/POS-printers implement barcode-printing.
The barcode-commandset is implemented in the barcode-method.
For a list of compatible barcodes you should check the manual of your printer.
As a rule of thumb: even older Epson-models support most 1D-barcodes.
To be sure just try some implementations and have a look at the notices below.

barcode-method

The barcode-method is rather low-level and orients itself on the implementation of ESC/POS.
In the future this class could be supplemented by a high-level class that helps the user generating the payload.

CODE128

Code128 barcodes need a certain format.
For now the user has to make sure that the payload is correct.
For alphanumeric CODE128 you have to preface your payload with {B.

from escpos.printer import Dummy, Serial
p = Serial()
print CODE128 012ABCDabcd
p.barcode("{B012ABCDabcd", "CODE128", function_type="B")

A very good description on CODE128 is also on Wikipedia [https://en.wikipedia.org/wiki/Code_128].

Contributing

This project is open to any kind of contribution. You can help with improving the documentation, adding fixes to the
code, providing test cases in code or as a description or just spreading the word. Please feel free to create an
issue or pull request.
In order to reduce the amount of work for everyone please try to adhere to good practice.

The pull requests and issues will be prefilled with templates. Please fill in your information where applicable.

This project uses semantic versioning [http://semver.org/] and tries to adhere to the proposed rules as
well as possible.

Author-list

This project keeps a list of authors. This can be auto-generated by calling ./doc/generate-authors.sh.
When contributing the first time, please include a commit with the output of this script in place.
Otherwise the integration-check will fail.

When you change your username or mail-address, please also update the .mailmap and the authors-list.

Style-Guide

When writing code please try to stick to these rules.

Python 2 and 3

We have rewritten the code in order to maintain compatibility with both Python 2 and Python 3.
In order to ensure that we do not miss any accidental degradation, please add these imports to the top
of every file of code:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

Furthermore please be aware of the differences between Python 2 and 3. For
example this guide [https://docs.python.org/3/howto/pyporting.html] is helpful.
Special care has to be taken when dealing with strings and byte-strings. Please note
that the _raw()-method only accepts byte-strings.
Often you can achieve compatibility quite easily with a tool from the six-package.

PEP8

This is not yet consequently done in every piece of code, but please try to ensure
that your code honors PEP8.
The checks by Landscape and QuantifiedCode that run on every PR will provide you with hints.

GIT

The master-branch contains code that has been released to PyPi. A release is marked with a tag
corresponding to the version. Issues are closed when they have been resolved in the development-branch.

When you have a change to make, begin by creating a new branch from the HEAD of python-escpos/development.
Name your branch to indicate what you are trying to achieve. Good branch names might
be improve/text-handling, feature/enable-color-printing.

Please try to group your commits into logical units. If you need to tidy up your branch, you can make use of a
git feature called an ‘interactive rebase’ before making a pull request. A small, self-contained change-set is
easier to review, and improves the chance of your code being merged.
Please also make sure that before creating your PR, your branch is rebased on a recent commit or you merged a recent
commit into your branch. This way you can ensure that your PR is without merge conflicts.

Docstrings

This project tries to have a good documentation.
Please add a docstring to every method and class. Have a look at existing methods and classes for the style.
We use basically standard rst-docstrings for Sphinx.

Test

Try to write tests whenever possible. Our goal for the future is 100% coverage.
We are currently using nose but might change in the future.
You can copy the structure from other testcases. Please remember to adapt the docstrings.

Further reading

For further best practices and hints on contributing please see the
contribution-guide [http://www.contribution-guide.org/]. Should there be any contradictions between this guide
and the linked one, please stick to this text.
Aside from that feel free to create an issue or write an email if anything is unclear.

Thank you for your contribution!

Changelog

2017-08-04 - Version 3.0a2 - “It’s My Party And I’ll Sing If I Want To”

This release is the third alpha release of the new version 3.0. Please
be aware that the API will still change until v3.0 is released.

changes

	refactor of the set-method

	preliminary support of POS “line display” printing

	improvement of tests

	added ImageWidthError

	list authors in repository

	add support for software-based barcode-rendering

	fix SerialException when trying to close device on __del__

	added the DLE EOT querying command for USB and Serial

	ensure QR codes have a large enough border

	make feed for cut optional

	fix the behavior of horizontal tabs

	added test script for hard an soft barcodes

	implemented paper sensor querying command

	added weather forecast example script

	added a method for simpler newlines

contributors

	csoft2k

	Patrick Kanzler

	mrwunderbar666

	Romain Porte

	Ahmed Tahri

2017-03-29 - Version 3.0a1 - “Headcrash”

This release is the second alpha release of the new version 3.0. Please
be aware that the API will still change until v3.0 is released.

changes

	automatically upload releases to GitHub

	add environment variable ESCPOS_CAPABILITIES_FILE

	automatically handle cases where full cut or partial cut is not available

	add print_and_feed

contributors

	Sam Cheng

	Patrick Kanzler

	Dmytro Katyukha

2017-01-31 - Version 3.0a - “Grey Area”

This release is the first alpha release of the new version 3.0. Please
be aware that the API will still change until v3.0 is released.

changes

	change the project’s license to MIT in accordance with the contributors (see python-escpos/python-escpos#171)

	feature: add “capabilities” which are shared with escpos-php, capabilities are stored in
escpos-printer-db [https://github.com/receipt-print-hq/escpos-printer-db]

	feature: the driver tries now to guess the appropriate codepage and sets it automatically (called “magic encode”)

	as an alternative you can force the codepage with the old API

	updated and improved documentation

	changed constructor of main class due to introduction of capablities

	changed interface of method blocktext, changed behavior of multiple methods, for details refer to the documentation
on python-escpos.readthedocs.io [https://python-escpos.readthedocs.io]

	add support for custom cash drawer sequence

	enforce flake8 on the src-files, test py36 and py37 on travis

contributors

	Michael Billington

	Michael Elsdörfer

	Patrick Kanzler (with code by Frédéric Van der Essen)

	Asuki Kono

	Benito López

	Curtis // mashedkeyboard

	Thijs Triemstra

	ysuolmai

2016-08-26 - Version 2.2.0 - “Fate Amenable To Change”

changes

	fix improper API-use in qrcode()

	change setup.py shebang to make it compatible with virtualenvs.

	add constants for sheet mode and colors

	support changing the linespacing

contributors

	Michael Elsdörfer

	Patrick Kanzler

2016-08-10 - Version 2.1.3 - “Ethics Gradient”

changes

	configure readthedocs and travis

	update doc with hint on image preprocessing

	add fix for printing large images (by splitting them into multiple images)

contributors

	Patrick Kanzler

2016-08-02 - Version 2.1.2 - “Death and Gravity”

changes

	fix File-printer: flush after every call of _raw()

	fix lists in documentation

	fix CODE128: by adding the control character to the barcode-selection-sequence the barcode became unusable

contributors

	Patrick Kanzler

2016-08-02 - Version 2.1.1 - “Contents May Differ”

changes

	rename variable interface in USB-class to timeout

	add support for hypothesis and move pypy3 to the allowed failures (pypy3 is not supported by hypothesis)

contributors

	Patrick Kanzler

	Renato Lorenzi

2016-07-23 - Version 2.1.0 - “But Who’s Counting?”

changes

	packaging: configured the coverage-analysis codecov.io

	GitHub: improved issues-template

	documentation: add troubleshooting tip to network-interface

	the module, cli and documentation is now aware of the version of python-escpos

	the cli does now support basic tabcompletion

contributors

	Patrick Kanzler

2016-06-24 - Version 2.0.0 - “Attitude Adjuster”

This version is based on the original version of python-escpos by Manuel F Martinez. However, many contributions have
greatly improved the old codebase. Since this version does not completely match the interface of the version published
on PyPi and has many improvements, it will be released as version 2.0.0.

changes

	refactor complete code in order to be compatible with Python 2 and 3

	modernize packaging

	add testing and CI

	merge various forks into codebase, fixing multiple issues with barcode-, QR-printing, cashdraw and structure

	improve the documentation

	extend support of barcode-codes to type B

	add function to disable panel-buttons

	the text-functions are now intended for unicode, the driver will automatically encode the string based on the selected
codepage

	the image-functions are now much more flexible

	added a CLI

	restructured the constants

contributors

	Thomas van den Berg

	Michael Billington

	Nate Bookham

	Davis Goglin

	Christoph Heuel

	Patrick Kanzler

	Qian LinFeng

2016-01-24 - Version 1.0.9

	fix constant definition for PC1252

	move documentation to Sphinx

2015-10-27 - Version 1.0.8

	
	Merge pull request #59 from zouppen/master

	
	Support for images vertically longer than 256 pixels

	Sent by Joel Lehtonen <joel.lehtonen@koodilehto.fi>

	Updated README

2015-08-22 - Version 1.0.7

	Issue #57: Fixed transparent images

2015-07-06 - Version 1.0.6

	
	Merge pull request #53 from ldos/master

	
	Extended params for serial printers

	Sent by ldos <cafeteria.ldosalzira@gmail.com>

2015-04-21 - Version 1.0.5

	
	Merge pull request #45 from Krispy2009/master

	
	Raising the right error when wrong charcode is used

	Sent by Kristi <Krispy2009@gmail.com>

2014-05-20 - Version 1.0.4

	Issue #20: Added Density support (Sent by thomas.erbacher@ragapack.de)

	Added charcode tables

	Fixed Horizontal Tab

	Fixed code tabulators

2014-02-23 - Version 1.0.3

	Issue #18: Added quad-area characters (Sent by syncman1x@gmail.com)

	Added exception for PIL import

2013-12-30 - Version 1.0.2

	Issue #5: Fixed vertical tab

	Issue #9: Fixed identation inconsistence

2013-03-14 - Version 1.0.1

	Issue #8: Fixed set font

	Added QR support

2012-11-15 - Version 1.0

	Issue #2: Added ethernet support

	Issue #3: Added compatibility with libusb-1.0.1

	Issue #4: Fixed typo in escpos.py

Esc/Pos

Module escpos.escpos

Printer implementations

Module escpos.printer

Constants

Module escpos.constants

Set of ESC/POS Commands (Constants)

This module contains constants that are described in the esc/pos-documentation.
Since there is no definitive and unified specification for all esc/pos-like printers the constants could later be
moved to capabilities as in escpos-php by @mike42 [https://github.com/mike42/escpos-php].

	author

	Manuel F Martinez and others

	organization

	Bashlinux and python-escpos [https://github.com/python-escpos]

	copyright

	Copyright (c) 2012-2017 Bashlinux and python-escpos

	license

	MIT

	
escpos.constants.CD_KICK_DEC_SEQUENCE(esc, p, m, t1=50, t2=50)

	

	
escpos.constants.SET_FONT(n)

	

Exceptions

Module escpos.exceptions

ESC/POS Exceptions classes

Result/Exit codes:

	0 = success

	10 = No Barcode type defined BarcodeTypeError

	20 = Barcode size values are out of range BarcodeSizeError

	30 = Barcode text not supplied BarcodeCodeError

	40 = Image height is too large ImageSizeError

	41 = Image width is too large ImageWidthError

	50 = No string supplied to be printed TextError

	60 = Invalid pin to send Cash Drawer pulse CashDrawerError

	70 = Invalid number of tab positions TabPosError

	80 = Invalid char code CharCodeError

	90 = USB device not found USBNotFoundError

	100 = Set variable out of range SetVariableError

	200 = Configuration not found ConfigNotFoundError

	210 = Configuration syntax error ConfigSyntaxError

	220 = Configuration section not found ConfigSectionMissingError

	author

	Manuel F Martinez and others

	organization

	Bashlinux and python-escpos [https://github.com/python-escpos]

	copyright

	Copyright (c) 2012-2017 Bashlinux and python-escpos

	license

	MIT

	
exception escpos.exceptions.Error(msg, status=None)

	Bases: exceptions.Exception

Base class for ESC/POS errors

	
exception escpos.exceptions.BarcodeTypeError(msg=u'')

	Bases: escpos.exceptions.Error

No Barcode type defined.

This exception indicates that no known barcode-type has been entered. The barcode-type has to be
one of those specified in escpos.escpos.Escpos.barcode().
The returned error code is 10.

	
exception escpos.exceptions.BarcodeSizeError(msg=u'')

	Bases: escpos.exceptions.Error

Barcode size is out of range.

This exception indicates that the values for the barcode size are out of range.
The size of the barcode has to be in the range that is specified in escpos.escpos.Escpos.barcode().
The resulting returncode is 20.

	
exception escpos.exceptions.BarcodeCodeError(msg=u'')

	Bases: escpos.exceptions.Error

No Barcode code was supplied.

No data for the barcode has been supplied in escpos.escpos.Escpos.barcode().
The returncode for this exception is 30.

	
exception escpos.exceptions.ImageSizeError(msg=u'')

	Bases: escpos.exceptions.Error

Image height is longer than 255px and can’t be printed.

The returncode for this exception is 40.

	
exception escpos.exceptions.ImageWidthError(msg=u'')

	Bases: escpos.exceptions.Error

Image width is too large.

The return code for this exception is 41.

	
exception escpos.exceptions.TextError(msg=u'')

	Bases: escpos.exceptions.Error

Text string must be supplied to the text() method.

This exception is raised when an empty string is passed to escpos.escpos.Escpos.text().
The returncode for this exception is 50.

	
exception escpos.exceptions.CashDrawerError(msg=u'')

	Bases: escpos.exceptions.Error

Valid pin must be set in order to send pulse.

A valid pin number has to be passed onto the method escpos.escpos.Escpos.cashdraw().
The returncode for this exception is 60.

	
exception escpos.exceptions.TabPosError(msg=u'')

	Bases: escpos.exceptions.Error

Valid tab positions must be set by using from 1 to 32 tabs, and between 1 and 255 tab size values.
Both values multiplied must not exceed 255, since it is the maximum tab value.

This exception is raised by escpos.escpos.Escpos.control().
The returncode for this exception is 70.

	
exception escpos.exceptions.CharCodeError(msg=u'')

	Bases: escpos.exceptions.Error

Valid char code must be set.

The supplied charcode-name in escpos.escpos.Escpos.charcode() is unknown.
Ths returncode for this exception is 80.

	
exception escpos.exceptions.USBNotFoundError(msg=u'')

	Bases: escpos.exceptions.Error

Device wasn’t found (probably not plugged in)

The USB device seems to be not plugged in.
Ths returncode for this exception is 90.

	
exception escpos.exceptions.SetVariableError(msg=u'')

	Bases: escpos.exceptions.Error

A set method variable was out of range

Check set variables against minimum and maximum values
Ths returncode for this exception is 100.

	
exception escpos.exceptions.ConfigNotFoundError(msg=u'')

	Bases: escpos.exceptions.Error

The configuration file was not found

The default or passed configuration file could not be read
Ths returncode for this exception is 200.

	
exception escpos.exceptions.ConfigSyntaxError(msg=u'')

	Bases: escpos.exceptions.Error

The configuration file is invalid

The syntax is incorrect
Ths returncode for this exception is 210.

	
exception escpos.exceptions.ConfigSectionMissingError(msg=u'')

	Bases: escpos.exceptions.Error

The configuration file is missing a section

The part of the config asked for doesn’t exist in the loaded configuration
Ths returncode for this exception is 220.

Capabilities

Module escpos.capabilities

Config

Module escpos.config

Image helper

Module escpos.image

Image format handling class

This module contains the image format handler EscposImage.

	author

	Michael Billington

	organization

	python-escpos [https://github.com/python-escpos]

	copyright

	Copyright (c) 2016 Michael Billington <michael.billington@gmail.com>

	license

	MIT

	
class escpos.image.EscposImage(img_source)

	Bases: object

Load images in, and output ESC/POS formats.

The class is designed to efficiently delegate image processing to
PIL, rather than spend CPU cycles looping over pixels.

	
width

	Width of image in pixels

	
width_bytes

	Width of image if you use 8 pixels per byte and 0-pad at the end.

	
height

	Height of image in pixels

	
to_column_format(high_density_vertical=True)

	Extract slices of an image as equal-sized blobs of column-format data.

	Parameters

	high_density_vertical – Printed line height in dots

	
to_raster_format()

	Convert image to raster-format binary

	
split(fragment_height)

	Split an image into multiple fragments after fragment_height pixels

	Parameters

	fragment_height – height of fragment

	Returns

	list of PIL objects

CLI

Module escpos.cli

Magic Encode

Module escpos.magicencode

Codepages

Module escpos.codepages

Katakana

Module escpos.katakana

Helpers to encode Japanese characters.

I doubt that this currently works correctly.

	
escpos.katakana.encode_katakana(text)

	I don’t think this quite works yet.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 escpos	

 	
 	
 escpos.constants	

 	
 	
 escpos.exceptions	

 	
 	
 escpos.image	

 	
 	
 escpos.katakana	

Index

 B
 | C
 | E
 | H
 | I
 | S
 | T
 | U
 | W

B

 	
 	BarcodeCodeError

 	
 	BarcodeSizeError

 	BarcodeTypeError

C

 	
 	CashDrawerError

 	CD_KICK_DEC_SEQUENCE() (in module escpos.constants)

 	CharCodeError

 	
 	ConfigNotFoundError

 	ConfigSectionMissingError

 	ConfigSyntaxError

E

 	
 	encode_katakana() (in module escpos.katakana)

 	Error

 	escpos.constants (module)

 	
 	escpos.exceptions (module)

 	escpos.image (module)

 	escpos.katakana (module)

 	EscposImage (class in escpos.image)

H

 	
 	height (escpos.image.EscposImage attribute)

I

 	
 	ImageSizeError

 	
 	ImageWidthError

S

 	
 	SET_FONT() (in module escpos.constants)

 	
 	SetVariableError

 	split() (escpos.image.EscposImage method)

T

 	
 	TabPosError

 	TextError

 	
 	to_column_format() (escpos.image.EscposImage method)

 	to_raster_format() (escpos.image.EscposImage method)

U

 	
 	USBNotFoundError

W

 	
 	width (escpos.image.EscposImage attribute)

 	
 	width_bytes (escpos.image.EscposImage attribute)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 python-escpos - Python library to manipulate ESC/POS Printers

 		
 Installation

 		
 Installation with PIP

 		
 Setup udev for USB-Printers

 		
 Enabling tab-completion in CLI

 		
 Methods

 		
 Escpos class

 		
 Printers

 		
 USB

 		
 Serial

 		
 Network

 		
 Troubleshooting

 		
 File

 		
 Dummy

 		
 Raspberry Pi

 		
 Dependencies

 		
 Installation

 		
 Run

 		
 TODO

 		
 Introduction

 		
 Details

 		
 Testing

 		
 Design

 		
 Todos in the codebase

 		
 Usage

 		
 Define your printer

 		
 USB printer

 		
 Network printer

 		
 Serial printer

 		
 Other printers

 		
 Define your instance

 		
 Configuration File

 		
 The printer section

 		
 Printing text right

 		
 Advanced Usage: Print from binary blob

 		
 Advanced Usage: change capabilities-profile

 		
 Hint: preprocess printing

 		
 Printing Barcodes

 		
 barcode-method

 		
 CODE128

 		
 Contributing

 		
 Author-list

 		
 Style-Guide

 		
 Python 2 and 3

 		
 PEP8

 		
 GIT

 		
 Docstrings

 		
 Test

 		
 Further reading

 		
 Changelog

 		
 2017-08-04 - Version 3.0a2 - “It’s My Party And I’ll Sing If I Want To”

 		
 changes

 		
 contributors

 		
 2017-03-29 - Version 3.0a1 - “Headcrash”

 		
 changes

 		
 contributors

 		
 2017-01-31 - Version 3.0a - “Grey Area”

 		
 changes

 		
 contributors

 		
 2016-08-26 - Version 2.2.0 - “Fate Amenable To Change”

 		
 changes

 		
 contributors

 		
 2016-08-10 - Version 2.1.3 - “Ethics Gradient”

 		
 changes

 		
 contributors

 		
 2016-08-02 - Version 2.1.2 - “Death and Gravity”

 		
 changes

 		
 contributors

 		
 2016-08-02 - Version 2.1.1 - “Contents May Differ”

 		
 changes

 		
 contributors

 		
 2016-07-23 - Version 2.1.0 - “But Who’s Counting?”

 		
 changes

 		
 contributors

 		
 2016-06-24 - Version 2.0.0 - “Attitude Adjuster”

 		
 changes

 		
 contributors

 		
 2016-01-24 - Version 1.0.9

 		
 2015-10-27 - Version 1.0.8

 		
 2015-08-22 - Version 1.0.7

 		
 2015-07-06 - Version 1.0.6

 		
 2015-04-21 - Version 1.0.5

 		
 2014-05-20 - Version 1.0.4

 		
 2014-02-23 - Version 1.0.3

 		
 2013-12-30 - Version 1.0.2

 		
 2013-03-14 - Version 1.0.1

 		
 2012-11-15 - Version 1.0

 		
 Esc/Pos

 		
 Printer implementations

 		
 Constants

 		
 Exceptions

 		
 Capabilities

 		
 Config

 		
 Image helper

 		
 CLI

 		
 Magic Encode

 		
 Codepages

 		
 Katakana

